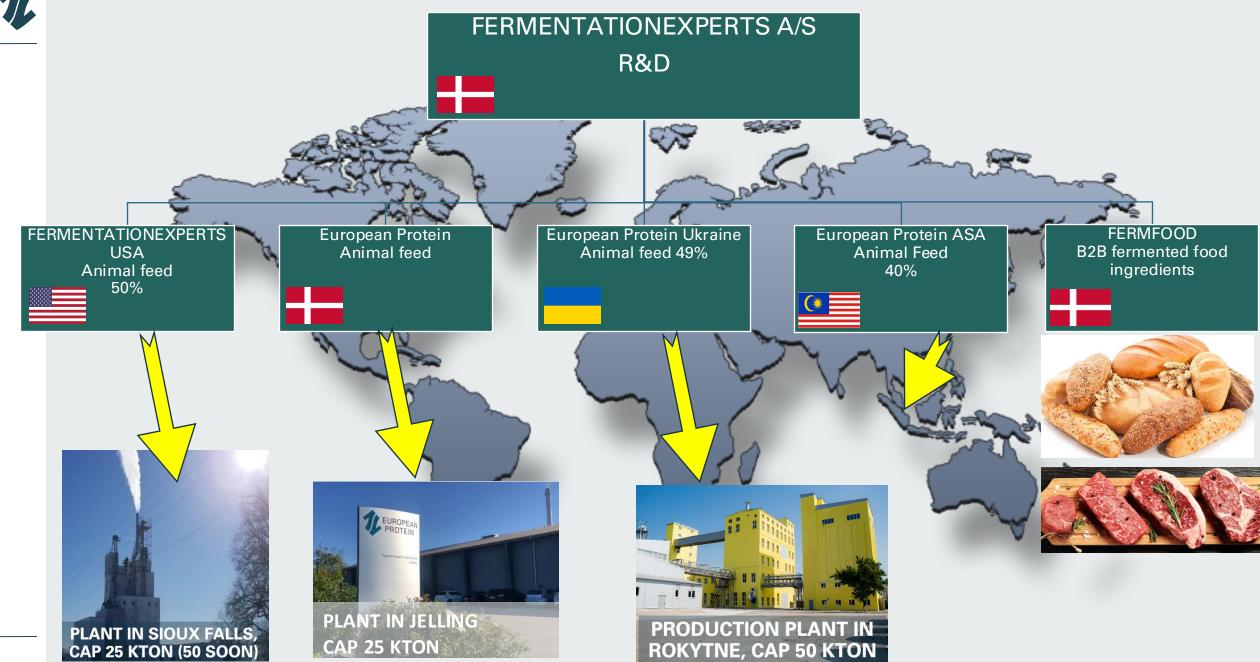


Fermented seaweed, a boost for all we feed

FERMENTATIONEXPERTS Tomorrow's solutions... today

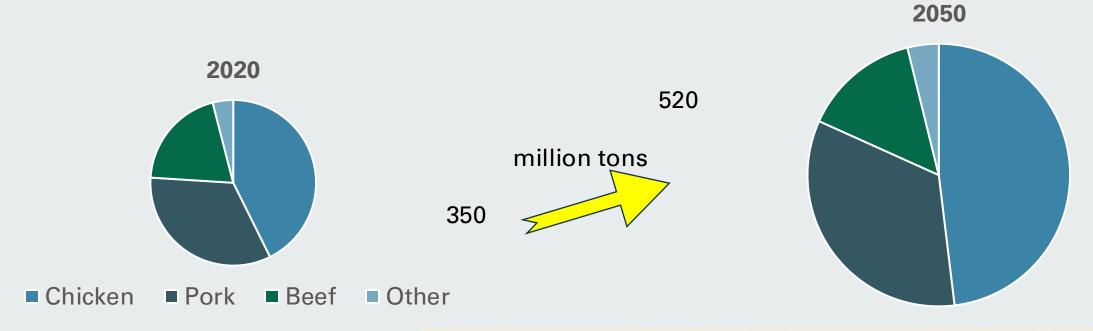
CONTENT

Who are FermentationExperts?


Meat and feed market

Challenges of producing meat

Solution we developed


Impact it has

Global meat market

Kg feed/kg meat

GLOBAL ANIMAL FEED MARKET

Huge market: Valued at \$ 600 billion, compound feed 400 billion, 1.2 billion metric tons

Competitive market: Nobody is big enough to influence price for the end products

Cost price is the main driver to stay in business

Feed costs are 50 - 80% of the total cost price

Main drivers for feeding value are energy and protein content

Feed	Seaweed	(dried)

GE 17-20 Mj/kg 9-15

NE 9– 12 Mj 3-5

16% protein 8-14%

Digestibility ~ 85% ~ 35%

Minerals ~ 5% 20 - 40%

\$ 0.33/kg \$ 3 (wild harvest) – 15 (farmed)

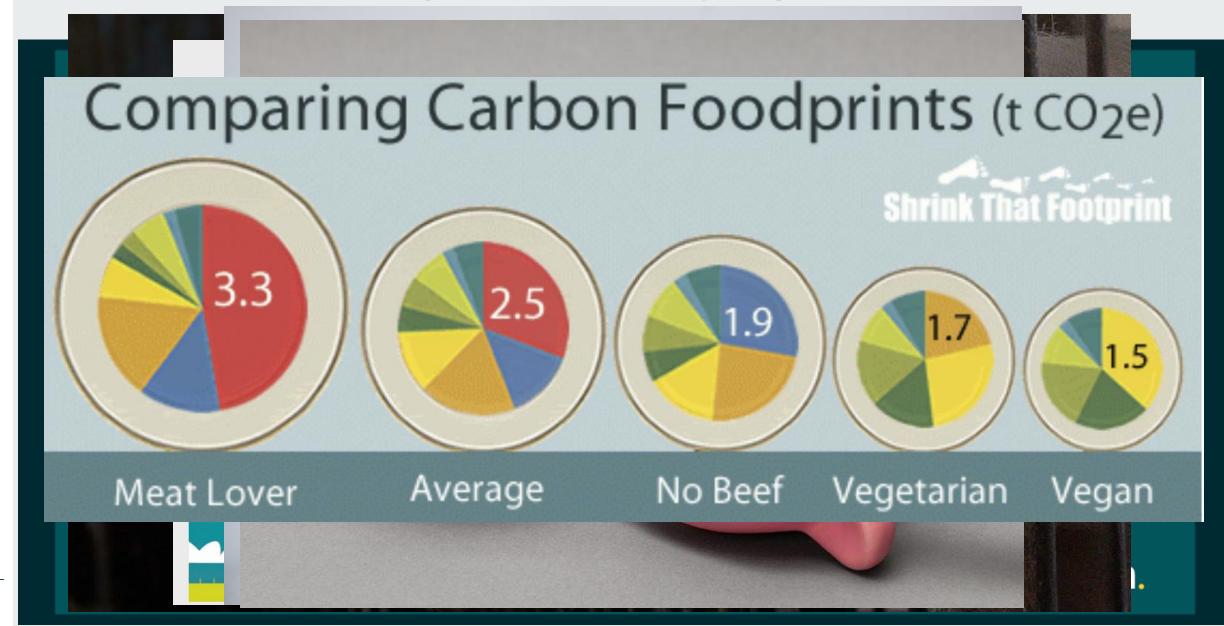
NO CHANCE AS A REGULAR FEED

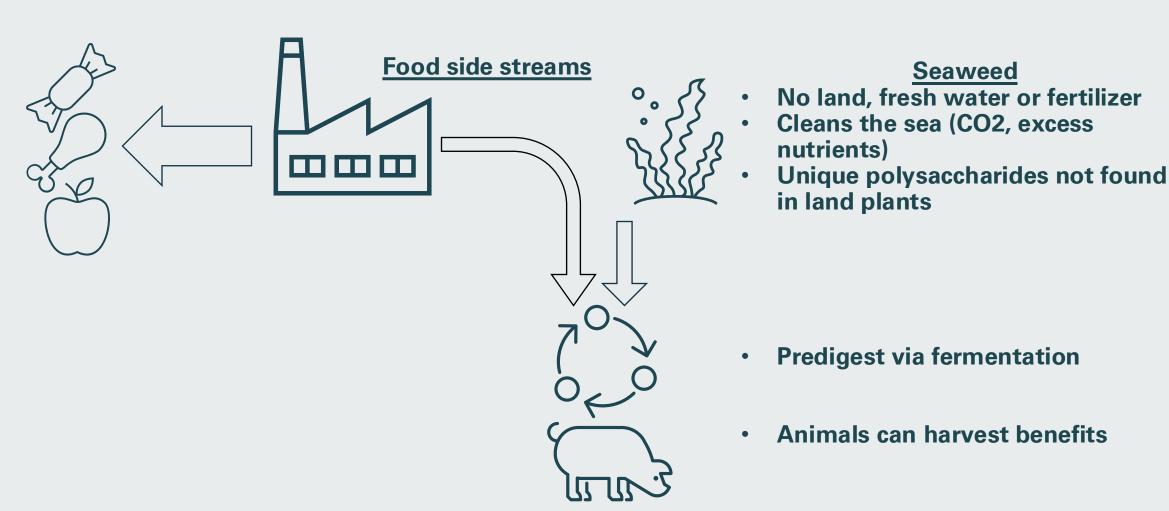
Despite all the soft environmental benefits of seaweed

It is too expensive to compete with land plants for inclusion in feed

So, seaweed will need to be marketed as an additive with benefits on animal health and (monetary) performance

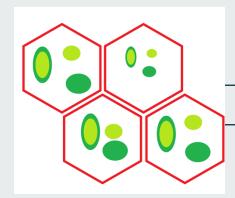
DRIVERS FOR SUCCES IN THE FEED BUSINESS

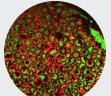



ARE THERE CHALLENGES?

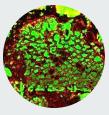
OUR SOLUTION

Fermented seaweed, a boost for all we feed

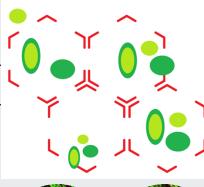

OUR SOLUTION

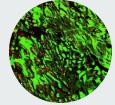


Fermentation


BEFORE

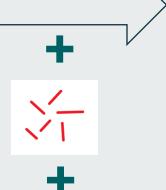
AFTER





PECTIN Fibers

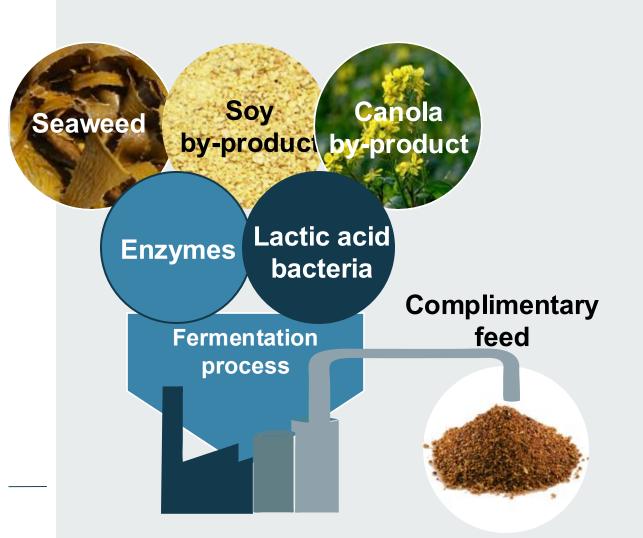
MANNAN Fibers



PECTIN Fibers

MANNAN **Fibers**

Increase in digestibility of proteins, peptides & minerals

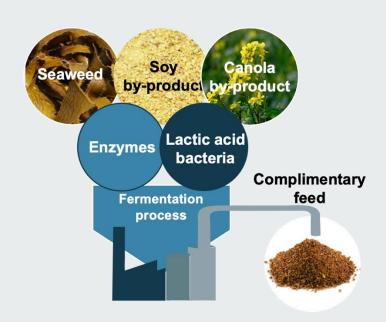

> Fiber with **prebiotic** properties

Metabolites like lactic acid, fatty acids & vitamins

OUR SOLUTION Solid-state fermentation

Bioactives

Prebiotics
Probiotics
Enzymes
Metabolites



AVANTAGES OF SOLID-STATE FERMENTATION

- > Increases digestibility, NSP, minerals (P)
- > Eliminates ANF's like TIA, glucosinolates, oligosaccharides
- > Acidification, decrease of buffer capacity for vegetable protein
- > Higher protein, phosphorous, fibre and energy digestibility
- > Produces lactic acid and other organic acids (3-8% depending on product). Live lactobacillus are present in the dry feed
- > Produces natural enzymes and vitamins (B)

Modulates the gut microflora

- > Formats health promoting compounds
 - > Anti microbial
 - > Anti inflammatory
 - > Immunity activating compounds

WHAT CAN THE GUT MICROBIOME DO?

Produces vitamins, hormones and other active metabolites

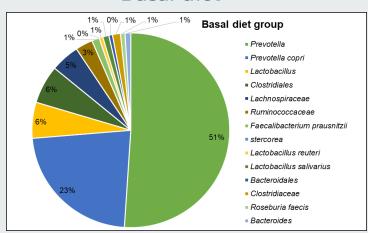
Harvests energy from food

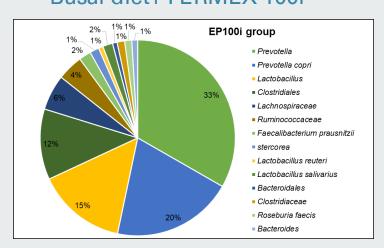
Aids digestion

Supports immune function

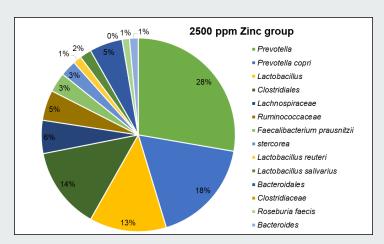
Protects against pathogens

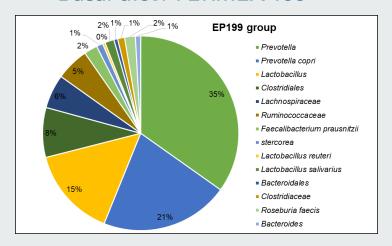
Improves gut transit and function


Sends signals to the brain and other organs



INFLUENCE ON GUT DEVELOPMENT


Basal diet


Basal diet+ FERMEX 100i

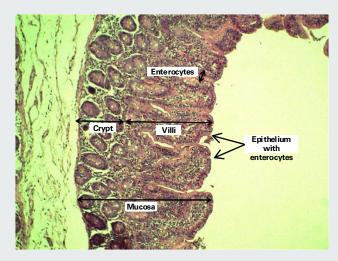
Basal diet+2.500 ppm zinc

Basal diet+ FERMEX 199

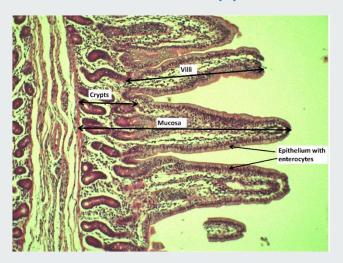
Copenhagen University Piglet trial

	Basal	10 %	10 %
	diet	EP199	EP100i
Lactobacillus spp.	5.9	14.8	14.5
Lach nospiraceae spp.	4.7	5.6	5.7
Ruminococcaceae spp.	2.8	5.4	4.2
Faecalibacterium			
prausnitzii	1.2	2.2	2.0
Lactobacillus salivarius	1.0	1.5	1.6

Even dominance of several bacterial groups corresponds to improvement in animal health and performance as they improve guthomeostasis

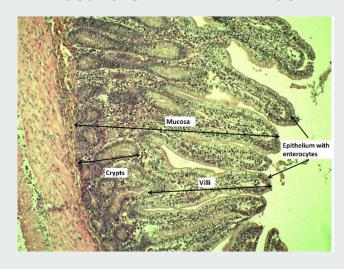


INFLUENCE ON GUT DEVELOPMENT


Copenhagen University Piglet trial

Basal diet

Thinner mucosa in jejunum in comparison with zinc and FERMEX100i groups.
Sign of an under- developed gut

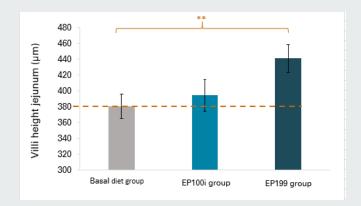

Basal diet+2.500 ppm zinc

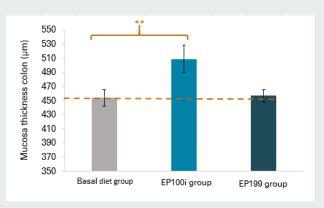
Lose mucosa in jejunum in comparison with basal and FERMEX 100i groups.

A sign of physiological stress, indicating a gut that is vulnerable to pathogen invasions and inflammation

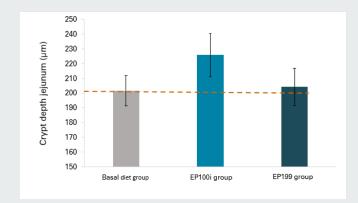
Basal diet+ FERMEX 100i

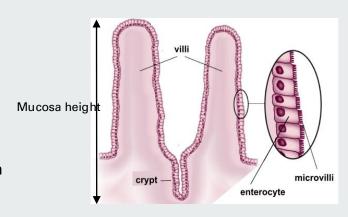
Thick and packed mucosa in jejunum in comparison with basal and zinc groups.


It is a sign of a well- developed gut.



GUT MODULATION




EP100i & EP199
displayed an
average of 10%
longer jejunum
villi in
comparison with
the basal group

EP100i & EP199
displayed an
average of 6%
thicker colon
mucosa in
comparison with the
basal group

EP100i & EP199
displayed an
average of 7%
deeper jejunum
crypts in
comparison with
the basal group

BACTERIA

Strain		Type strain:	Concentration of bioactives at inhibition zone (mg/mL)			
	EP-product	Pathogen	100 mg/mL	50 mg/mL	25 mg/mL	DMSO control
	Gram positive					
	Methicillin-resistant Staphyloccocus aureus (MRSA)	USA_300	-	-	+	++
	Methicillin-resistant Staphyloccocus aureus (MRSA)	COL	-	-	-	++
	Staphyloccocus carnosus	15605T (CCUG)	-	-	-	++
	Clostridium perfringens	19408 (CCUG)	-	-	-	++
	Streptococcus bovimastiditis	69277T (CCUG)	-	-	++	++
	Gram negative					
	Campylobacter jejuni	29428 (CCUG)	-	-	-	++
	Campylobacter coli	45147 (CCUG)	-	-	-	++
	E. coli	11775 (CCUG)	-	-	-	++
\	Vibrio parahaemolyticus	27657 (DSM) / 67711 CCUG	-	-	+	++
	Salmonella enterica, supsp enterica	46220 (CCUG)	-	++	++	++

- Symbol indicates no visible growth was observed in the MBC experiments.
- + Symbol indicates some visible growth and a small inhibition zone.
- ++ Symbols represents visible growth and no inhibition zone.

ANTIBODIES IN SOW MILK

NORTH P≤0.05 SEA FARMERS

EFFECT OF MATERNAL FEEDING

	Mineral utilization	Piglets	Up to 35% better	
Blood	iviiilei ai utilization	Sows	Up to 32% better	
blood	Albumin (transport of nutrients)	Sows and piglets	Up to 13% more	
	Iron binding capacity	Sows and piglets	Up to 23% better	
Milk	lmmunoglobulins in sow colostrum	Sows	Up to 40% more lgG	
	Bacteria in feces	Sows	Reduced by up to 95-98%	
Feces	(E.coli, C. perfringens, Salmonella)	Sows		
	Diarrhoea incidence	Piglets	Reduced by up to 58%	
Bones	Cartilage in knee joints	Piglets	Increased by up to 75%	
Dones	Bone strength: Load before fracture	Piglets	Increased by up to 18%	

Source: https://content.sciendo.com/view/journals/aoas/20/2/article-p535.xml?language=en https://www.sciencedirect.com/science/article/abs/pii/S1871141319305165 https://www.sciencedirect.com/science/article/pii/S2405654519300587

DOCUMENTATION

Our products are documented in independent trials conducted by Copenhagen, Aarhus and Aalborg University (DK), Lublin University (PL), Uni of Illinois and Minnesota (USA).

Animal Feed Science and Technology

Biochemical and haematological blood parameters of sows during pregnancy and lactation fed the diet with different source and activity of phytase

Anna Czech *, Eugeniusz R, Grela b & 83

https://doi.org/10.1016/j.anifeedsci.2004.07.013

Livestock Science Volume 224, June 2019, Pages 60-68

Animal Nutrition ume 5, Issue 4, December 2019, Pages 373-379

A fermented rapeseed meal additive: Effects on production performance, nutrient digestibility, colostrum immunoglobulin content and microbial flora in sows

Eugenlusz R. Grela *, Anna Czech b A. III, Martyna Klesz b "Łukasz Włazło *, Bożena No

https://doi.org/10.1016/j.aninu.2019.05.004 Under a Creative Commons license

ady was to estimate the influence of micro omponents in blood of sows during pregn: ree experimental groups. Diets with low co se level used in experiment 2 contained tri Tomczyk-Warunek* iditionally, lactating diets were supplemen Show more V l design was analogical in both experiment was supplemented with the standard mixts

d P according to NRC recommendations (1

Dried fermented post-extraction rapeseed meal to mixtures with low (425 ± 25 PU kg⁻¹) or given to sows as an alternative protein source for soybean meal during pregnancy improves bone conducted on 75 sows in each one, all the a development of their offspring

nt 1 were based on barley, wheat, oat and r: E. Tomaszewska * A. B., S. Muszyński * A. B., P. Dobrowolski *, D. Kamiński *, A. Czech *, E.R. Grela *, D. Wiacek *, A.

https://doi.org/10.1016/j.livsci.2019.04.009

Get rights and content

Abstract

This study was to assess the effect of fermented rapeseed meal (FRS) sows, taking into account the physiological period (pregnancy or lac reproductive cycle (primiparous or multiparous sows), on productio nutrient digestibility, colostrum immunoglobulin content, and micr sows. The experimental material included 30 primiparous gilts and sows after their second lactation. The animals in the control groups Cs (sows) received a standard diet for pregnant or lactating sows, der reproductive period. Experimental groups EG and Es comprised gilt multiparous sows, respectively, receiving a diet with a 4% share of F soybean meal up to 100 d of gestation. In addition, from 100 d of gelactation, the sows in experimental groups received a diet with a 9% and then again a diet with a 4% share of FRSM until the end of lacta addition of 4% to 9% share of a FRSM component in feed significan production parameters, mainly in primiparous gilts, leading to an in size and in litter weight at 28 d of age. It also belos to

Impact of Dietary Supplementation of Lactic Acid Bacteria Fermented Rapeseed with or without Macroalgae on Performance and Health of Piglets Following Omission of Medicinal Zinc from **Weaner Diets**

Gizaw D. Satessa 100, Paulina Tamez-Hidalgo 2, Yan Hui 300, Tomasz Cieplak 300, Lukasz Krych 3, Søren Kjærulff 20, Grete Brunsgaard 2, Dennis S. Nielsen 3 and Mette O. Nielsen 4,*

- Department of Veterinary and Animal Sciences, University of Copenhagen, Grønnegårdsvej 3,
- 1870 Frederiksberg C, Denmark; gizaw.satessa@sund.ku.dk Fermentationexperts A/S, Vorbassevej 12, 6622 Copenhagen, Denmark; pat@fexp.eu (P.T.-H.);
- skj@fermbiotics.com (S.K.); grb@fexp.eu (G.B.) Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark huiyan@food.ku.dk (Y.H.); DKTOCl@chr-hansen.com (T.C.); krych@food.ku.dk (L.K.);
- dn@food.ku.dk (D.S.N.) Department of Animal Sciences, Faculty of Technical Sciences, Aarhus University, Blichers Allé 20
- 8830 Tjele, Denmark

Received: 26 November 2019; Accepted: 12 January 2020; Published: 15 January 2020

Simple Summary: Weaning is the most stressful event in pig production and is often associated with reduced performance, diarrhoea and piglet mortality. Currently, a high dose of zinc oxide (ZnO) is used to prevent weaning-related loss in productivity. However, the feeding of ZnO in weaner piglets will be phased out by 2022 in Europe, leaving pig producers without options to manage post-weaning disorders. This study investigated whether fermented rapeseed meal (FRM) alone or in combination with one (FRMA) or more (FRMAS) brown macroalgae species could improve weaner piglet growth, intestinal development and health compared to either non-supplemented die (negative control, NC) or diets supplemented with 2500 ppm ZnO (positive control, PC). Both FRM and FRMA resulted in a similar production performance to PC when fed to weaned piglets. The PC, FRM and FRMAS (gender-specific) improved jejunal villus development more than the NC. Color mucosal development was stimulated, and signs of intestinal inflammation were reduced by FRM. The composition and diversity of colon microbiota were similar between all fermented feeds and PC but different compared to NC. In conclusion, FRM was at least as effective as ZnO to improve piglet growth, intestinal development and health.

peseed meal increased bone

physis increased in offspring peseed meal.

speseed meal decreased trabecular r offspring.

stallites in bone decreased in mented rapeseed meal.

IMPACT

Trial on 35 Sow farms, before/after

Increase in health, reproduction and productivity

+ 2 PIGLETS
MORE WEANED
PER SOW PER YEAR

- 2% mortality

More milk, piglets weaned 360 grams heavier

12% LESS SOW FEED PER PRODUCED PIGLET

50 -100 EUR MORE PROFIT PER SOW PER
YEAR

IMPACT

Multisite farm, comparing full year results Apr 24 – Apr 25. Home feed mill, feeding fermented soy/seaweed on 4 farms, control feed without on 1 farm.

Fermex 299	No, 1 farm	Yes, 4 farms	Diff absolute	Diff %
Sow number	3000	8600		
Birth loss	16,54%	10,57%	5,97%	36%
of which mummified	10,28%	5,63%	4,65%	45%
Av liveborn per litter	13,84	14,28	-0,44	-3%
Pre weaning mortality	26,92%	17,85%	9,07%	34%
Pigs weaned / sow / yr	23,55	28,34	-4,79	-20%
Av. Sow mortality	30,05%	17,25%	12,80%	43%
Feed use per sold weaner (lbs)	98,97	87,06	11,91	12%
Add feed costs per sow /yr (\$)		35,00		
Add sales op weaners / sow/ yr (\$)		250,00		
Saved costs per av sow to buy and raise gilts (\$)	128,00		
Projected annual extra income per sow (\$)		\$343,00		_

IMPACT Use of medicines

Medicin	Melow	em (cc)	Linco (DD*1000)		Peni-Kel (DD*1000)		Total (DD*1000)	
Group	Test	Control	Test	Control	Test	Control	Test	Control
All sows	5,63	8,24	4,28	5,04	0,32	1,67	4,60	6,70
Multiparous	5,76	7,17	4,10	4,49	0,46	1,02	4,60	5,50
Gilts	5,33	9,86	4,69	5,87	0,00	2,65	4,70	8,50

In test group compared to control:

32% less use of pain killer Melovem

15% less Linco

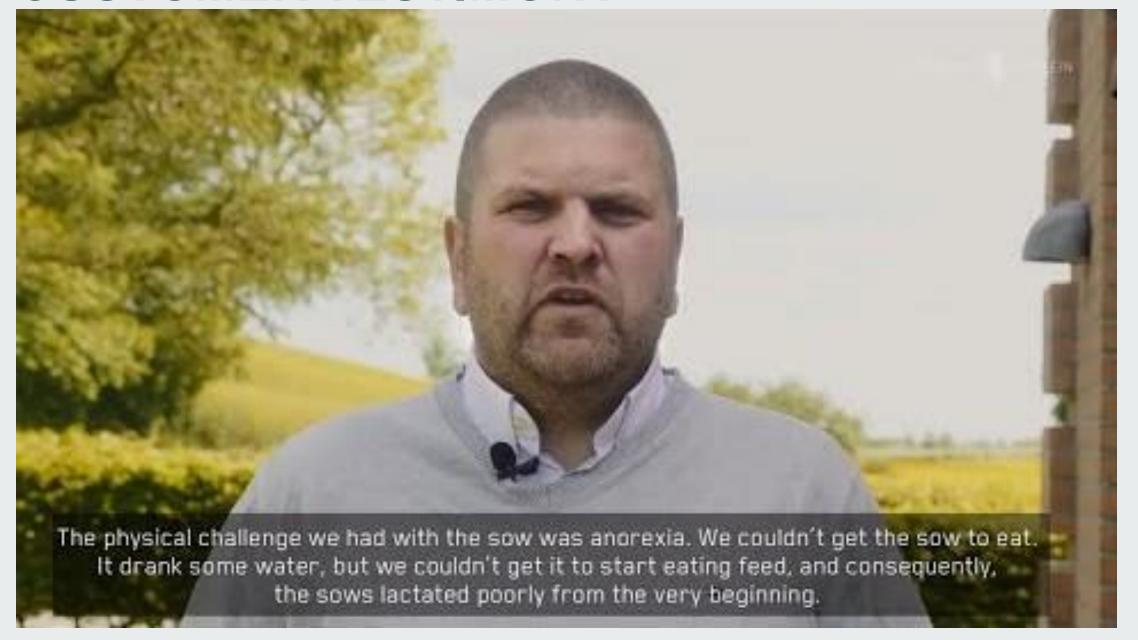
81% less Peni-Kel

31% lower Defined Daily Dose of antibiotics used per animal

Differences are larger in gilts than in multiparous sows

Summariced positive impact

- We click 12 out of 17 boxes of the UN SDGs!
- Better health and animal welfare
- Reduced medicine and AB use
- Economics



 Sustainability : √ feed miles, better LCA, √ CO2, √ Nitrogen, pollution

CUSTOMER TESTIMONY

Thanks for your attention!

FERMENTATIONEXPERTS Tomorrow's solutions... today

Rene Schepens, oct 25 europeanprotein.com res@fexp.eu +31 6 5133 4556